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A principal technique for studying percolation, (ferromagnetic) Ising, Potts, and 
random-cluster models is the FKG inequality, which implies certain stochastic 
comparison inequalities for the associated probability measures. The first result 
of this paper is a new comparison inequality, proved using an argument 
developed elsewhere in order to obtain strict inequalities for critical values. As 
an application of this inequality, we prove that the critical point Pc(q) of the 
random-cluster model with cluster-weighting factor q (>/1) is strictly monotone 
in q. Our second result is a "BK inequality" for the disjoint occurrence of 
increasing events, in a weaker form than that available in percolation theory. 
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1. I N T R O D U C T I O N  

In studying ferromagnetic Ising and Potts models, it is common to con- 
centrate in part on the associated random-cluster model (or "Fortuin-  
Kasteleyn representation"). Random-cluster models have proved to be the 
natural setting for many arguments of value, as well as being objects 
worthy of study in their own right. The relationship between random- 
cluster models and ferromagnetic systems was first described by Fortuin 
and Kasteleyn fs-lj'Jg~ and more recently by Edwards and Sokal. c7~ For 
recent accounts of the theory of random-cluster models, see refs. 1 and 
14-17. 

The random-cluster model on a graph G has two real parameters, being 
an "edge-parameter" p satisfying 0 ~< p ~< 1, and a "cluster-weighting factor" 
q satisfying q > 0. When q ~> 1, the associated probability measure satisfies 
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the F K G  lattice condition ~t'12) and therefore satisfies the F K G  inequality 
(which may be stated roughly as "increasing events are positively corre- 
lated"). This useful inequality implies properties of stochastic comparison 
which are of substantial value in studying any associated phase transition. 
The F K G  inequality is generally invalid when q < 1, and this is a principal 
obstacle in studying this caseJ 15~ 

The primary purpose of the present paper is to prove a new comparison 
inequality for random-cluster measures with q>/1; we do not know how 
to derive this inequality from an argument of F K G  type. The secondary 
purpose is to state and prove a BK inequality for random-cluster models 
with q>/1; this is a generalization of the usual BK inequality for per- 
colation, but its form for general q is necessarily weaker than for the case 
q = l .  

When q>~ 1, one may construct random-cluster measures on the 
infinite grid 7/a by passing to a thermodynamic limit. ~1'15~ Such measures 
have a phase transition at a critical value p = p,(q) that marks the onset of 
an infinite cluster (or connected component) of the graph. It is immediate 
from the standard comparison inequalities that Pc(q)<~ Pc(q') if q < q', and 
it is natural to conjecture that strict hTequality holds here. This may indeed 
be proved by applying the comparison inequality proved herein. Indeed, 
one may go slightly further and calculate a strictly positive lower bound for 
the difference p,.(q') - p,(q) when 1 ~< q < q'. 

The argument laid down in ref. 2 and developed further in refs. 6 and 
14 and in this paper has implications for the values of certain critical 
exponents. In studying the nature of the phase transition, it is usual to 
assume that q is fixed and that p is near the critical point p,.(q). However, 
one may think of q as just another parameter, which may be varied. One 
is then led to study the nature of the critical point (Pc(q), q) in (p, q) 
space. Using the results of this paper, in the manner described in ref. 6, it 
emerges that certain families of critical exponents have common values in 
this enhanced parameter space. We shall return briefly to this point in 
Section 3. 

Finally we recall the relationship between Potts models and random- 
cluster measures. We express the finite graph G as G = (V, E), where V is 
the vertex set and E is the edge set; we define the state spaces Z =  
{1, 2 ..... q}V and f2=  {0, 1} e, where q is a positive integer (q>~2). The 
Potts probability measure with ferromagnetic interaction J ( > 0 )  and 
inverse temperature fl is given by 

n ( a ) = ~ e x p  - f l J  ~ (1-6.u,~..+,,,) , 
<-.v> 
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where Z is the normalizing factor, the sum is over all edges (u,  v ) e  E, and 
6~ is the Kronecker  delta, 

if i r  

The corresponding random-cluster  (probabil i ty)  measure is 

1 ~]-[ } qk(col, ~bp.q(co) = - g - - - .  1 * p'"(")(1-p) '-''l~' co~(2 (1.1) 
l~p,q ~e~E 

where 

Zp, q= ~ { ~I p~~ q kl'~ (1.2) 
t o E ~  e~E 

is the appropr ia te  normalizing factor, and where 

p =  l - e  -€ (1.3) 

and k(co) is the number  of connected components  of the graph with vertex 
set V and edge set {e ~ E: co(e) = 1 }. 

One may obtain Potts and random-cluster  measures on the infinite 
lattice 7/a by passing to appropr ia te  thermodynamic  limitsJ x''7~ It turns out 
that the critical inverse temperature  fl,.=tic(J, q) of the Potts  model is 
related by (1.3) to the critical value p,.(q) of the associated random-cluster  
model. Therefore the strict monotonici ty  of p,.(q) as q increases implies the 
strict monotonici ty  of fl,. as a function of q. 

In Section 2 we present the new compar ison inequality, and we apply 
it in Section 3. Section 4 contains the BK inequality for random-cluster  
models. 

2. C O M P A R I S O N  I N E Q U A L I T I E S  

Let G = ( V, E) be a finite graph, and suppose that 0 ~< p ~< 1 and q > 0. 
The appropr ia te  state space is the set f 2 =  {0, 1 }E of all vectors co= 
(co(e):e~E) with zero/one entries. We call an edge e open (in co) if 
co(e) = 1, and We write q(co) = {e: co(e) = 1 } for the set of open edges. The 
random-cluster  measure ~bp.q on G with parameters  p and q is defined by 
(1.1) and (1.2). 

It is well known IL~71 that q~p.,~ satisfies the F K G  inequality if q~> 1. 
Here is some notat ion prior  to the statement of  this inequality. We call 
a function f : f 2 ~ R  increasing if f(co)<..f(co') whenever co-..<co' [i.e., 
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whenever co(e)~< co'(e) for all e e El ;  f is called decreasing if - f  is increas- 
ing. For a random variable f and a probability measure/~ on g2, we denote 
by/~(f)  the mean o f f  under/1, 

# ( f ) =  y '  f(co)p(co) (2.1) 
~oE.Q 

Theorem 2.1. (FKG i n e q u a l i t y ) .  If q~> 1, then 

(~,.q(fg) >~ (~,,q(f) q~p.q(g) (2.2) 

for all increasing functions f,  g: (2 --, R. 

Given two probability measures /~j and P2 on C2, we say that /~2 
dominates pl, written /~1 ~</t2, if/~ ~(f) ~< P2(f) for all increasing f :  C2 ~ R. 
The FKG inequality enables the proof of two standard comparison 
inequalities for random-cluster measures. 

Theorem 2.2 (Comparison inequalities).  It is the case that 

Op'.q'~Op, q if q'>~q, q'>~l, p'<~p (2.3) 

P' P (2.4) q~p,q,>~p.q if q'>~q, q'~>l, q,(l_p,)>,q(1--p) 

Although these were first proved by Fortuin and Kasteleyn, we refer 
the reader to refs. 1 and 17 for modern accounts. The next theorem is our 
new result, which extends (2.3). For a reason which will become evident in 
Section 3, we need to introduce another piece of terminology. A subset S 
of the vertex set V is called spanning if every edge of E is incident to at least 
one vertex of S. The degree deg(S) of a spanning set S is defined to be 
the maximum degree of its members, i.e., the maximum number of edges 
incident to any one vertex in S. We assume henceforth that q >~ 1. 

T h e o r e m  2.3. (a) For each 6 > 0 ,  there exists a continuous func- 
tion ~(p,q)=ct(p,q, 6), which is strictly positive when 0 < p <  1, q~> 1, 
such that the following holds. If there exists a spanning set S with 
deg(S) <~ 6, then 

O 0 0 
~(p, q)-~p(~t,.q(A)<~ -q-~q~bt,.q(A)<~ p (1 -  p)-~pqkp.q(A ) (2.5) 

for all increasing events A. 

(b) For each 6 > 0 ,  there exists a continuous function ~,(p, q )=  
V(P, q, 6), which is strictly increasing in p on [0, 1 ], and strictly decreasing 
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in q on [ 1, oo), such that the following holds. If there exists a spanning set 
S with deg(S) ~< 6, then 

~p' ,q '~Op,  q if l<~q<~q' and ~,(p',q')>f),(p,q) 

We note that (2.3) implies 

(2.6) 

OqOp.q(A)~O~ Op, q(A) for all increasing A (2.7) 

The function ),(p, q) in Theorem 2.3(b) may be taken as any function 
which satisfies the partial differential equation 

subject to 

0V OV 
o~ ( p, q ) -~p + q -~q = O, 0 < p < l ,  q > l  

01,<0 by 
Oq <~pp' 0 < p <  1, q > l  

Proof of Theorem 2.3. (a) Let A be an increasing event, and write 
O(p, q)=qbp.q(A). We prove (2.5) following the scheme laid down in ref. 2 
and developed in refs. 6 and 14. The method proceeds by constructing a 
Markov chain Z, = (X,, Y,), taking values in the state space f2 2. We shall 
not give full details of this construction, but refer to ref. 6 for further 
discussion where necessary. 

For co ~ f2 and f ~  E, we define the configurations 09y and 09Y by 

Let DI(09 ) be the indicator function of the event that the endpoints of f a r e  
in different components of the graph (V, q(09s)), i.e., the event that the 
endpoints o f f  are connected by no open path that does not use f itself. We 
define the functions H, HA: ~2 _._, N as follows. First, 

H(o~r, 09I)= 1 (2.9) 

1--p  H(09j~ 09y)= qDf{o~) (2.10) 
P 

for 09~2 a n d f ~ E .  Second, H(09, 09') is set to 0 for other pairs 09, 09' with 
09 # 09'. Next, we define H A by 

HA(09,09')=H(09,09')IA(09A09 ') if 09#09' (2.11) 
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where IA is the indicator function of A, and m ^ m ' (g )=  min{m(g), e0'(g)}. 
The diagonal terms H(m, m) and Ha(m, m) are chosen in such a way that 

H(m,m ' )=  ~ H * ( m , m ' ) = 0  forall eoeg2 

Now we are ready to define the chain Z,. Let J : /2 2 x / 2  2 ---+ R be given 
by 

J(7~f, co; KJ, m f )  = 1 (2.12) 

J(n, o/; gf, (of) = HA(rail mr) (2.13) 

J(w t, mr; gf, co -r) = H(x f, gf) - HA(m J, mf) (2.14) 

for all (n, co) es satisfying n~<m, and for a l l f ~ E .  All other off-diagonal 
values of J are set to 0, and the diagonal elements are chosen so that 

J(n, m; ~', co') = 0 for all re, m 
(r~',~' I 

The function J will be used as the generator of a Markov chain on the state 
space (2 2. With J viewed in this way, Eq. (2.12) specifies that, for g~g2 and 
f ~  E, the edge f is acquired by ~ (if it does not already contain it) at rate 
1; any edge so acquired is added also to m if it does not already contain 
it. Equation (2.13) specifies that, for reef2 and f~q(m) ,  the edge f is 
removed from m [and also from n i f fEq(rc) ]  at the rate given by (2.11). 
For f ~ q ( r 0  [_cq(m)], there is an additional rate at which f is removed 
from g but not from m. Note that this additional rate is indeed non- 
negative, since 

H(rt f, n f ) -  HA(~J; mf) = 
1 

{qt)II'~--q~ >>-0 (2.15) 
P 

by (2.10) and (2.11); remember that q~> 1 and Df(m)~Or(n  ) when rc~<m. 
It is shown in ref. 6 that there exists a Markov chain Z, = (X,, Y,) on 

g2 2 such that: 

(i) Z, has generator J [i.e., for (n ,m)#( rd ,  m'), J(n,m;rd,  m') 
represents the jump rate of the chain from (~, m) to (n', m')]. 

(ii) The limiting measure of X,, as t ~ 0% is (~p.q(.). 
(iii) The limiting measure of Y,, as t--* ~ ,  is Op.q(" [A). 

(iv) X,~<Y, fo ra l l t .  
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Evidently 

qJ p, q ( A  ) - Z p ,  q ,o~ Q 
(2.16) 

Differentiating with respect to p, one obtains, as in ref. 6, that 

30 1 
- -  coy(N, IA) 

~?p p(l  -- p) 

O(p, q) 
{lim~ P(N(Y,)  -- N(X,)) } 

p(1 P) 

O(p, q) ~, lim P(X,(e)=O, Y,(e)= 1) (2.17) 

where N = N ( c o ) =  l{e: co(e)= 1}1, "coy" denotes covariance with respect 
to Cp.q, and P is the appropriate probability measure for the chain Z,. 
A similar elementary calculation yields that 

00 1 i 
- - =  - cov(k, IA) = - -  O(p, q){ lim P(k(X,) - k( Y,))} 
3q q q ,4 

(2.18) 

where k =  k(co) is the number of components of the graph (V, q(co)) as 
usual. 

By an elementary graph-theoretic argument, 

whence 

k(X,) - k(Y,)  <<. N(Y,)  - N(X,) 

O0 00 
- q ~q <~ p ( 1 -  p ) -~p 

which is the right-hand inequality of (2.5). 
Let 6 be a positive integer, and suppose that S is a spanning set of 

vertices satisfying deg(S)~< 6. For x e V, let Ix be the indicator function of 
the event that x is an isolated vertex. Clearly 

P(k(X , ) -k (Y , ) )>~  ~ P(Ix(X,)= l , / x (Y , )=O)  
>.eS 

(2.19) 

since the right-hand side counts the number of vertices of S which are 
isolated in X,, but which are not isolated in Y,. Let x e  S, and let ex be any 
edge of E which is incident to x. We claim that 

vP(X,(ex)=O, Y,(e . , . )=I)<P(I . , . (X,+,)=I,  Ix(Y,+I)=O) (2.20) 
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for some v=v(p, q) which is continuous, and is strictly positive on 
(0, l ) x  [1, ~ ) ;  here, v is allowed to depend on the value of 6 but not 
further upon x, ex, S, or G. Once (2.20) is proved, the left-hand inequality 
of (2.5) follows immediately by summing (2.20) over x and using 
(2.17)-(2.19) as follows: 

-q~q>~O lirn E P(I.~(X,+~)=I,I~(Yt+,)=O) 
t x E S  

} t>-~- f , l im 2 P(X,(e) = O, Y,(e) = 1) 
L ~ e e E  

Ov O0 
= - ~  p ( 1 - p ) ~ p  

Finally we prove (2.20). Let E,. be the set of edges of E which are incident 
to x. Suppose that the event T, = {X,(ex) = 0, Y,(ex) = 1 } occurs. Let: 

(i) U be the event that, during the time interval (t, t + 1), every edge 
f o r  Ex\{ex} with X,(f)= 1 changes its X state from 1 to 0; the 
removal of such edges from X may involve also their removal 
from Y (see ref. 6, Section 4). 

(ii) V be the event that no edge f of Ex\{ex } with X,(f)= 0 changes 
its state in the time interval (t, t + 1). 

(iii) W be the event that the state of the edge ex remains unchanged 
during (t, t + 1). 

As described in ref. 6, there exists a strictly positive and continuous func- 
tion Vs = vs(p, q) on (0, 1)x [1, oo) [which is allowed to depend on G and 
S only through the quantity deg(S)] such that 

P(Uc~VnWI T,)>>-Vs for all t 

uniformly in x, ex, G, and t. This inequality remains true if we replace v s 
by the positive continuous function v defined by 

v(p, q, 5)=min{vs(p, q): 0 ~< deg(S) ~< 5} 

Now, if T, c~ U c~ V n W occurs, then x is isolated in X, + 1, but not isolated 
in Y,+ I [since Y,+ l(ex)= 1]. Therefore (2.20) is valid, and the proof of (a) 
is complete. A function v of the required form may be written down 
explicitly. 

(b) Inequality (2.5) may be stated as 

(~, q). V0 ~< 0 ~< (p(1 - p), q) .V0 (2.21) 
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and we have in addition that 

80 O0 ~qq ~< 0 ~<~pp (2.22) 

by Theorem 2.2. Possibly aided by sketching the characteristics of the 
partial differential equations 

(a, q) -Vf=  O, ( p ( 1 - p ) , q ) . V f = O  

we find that the right-hand inequality of (2.21), together with (2.22), 
implies the second part of Theorem 2.2. Similarly the left-hand inequality 
of (2.21) implies (2.6), with ? a solution of the equation (ct, q ) - V y = 0  
satisfying 

Oq <~p when 0 < p < l ,  q > l  II 

3. A P P L I C A T I O N S  

We give two applications of Theorem 2.3 to the phase transition for 
random-cluster models. Here is some notation. The hypercubic lattice is 
denoted by Z d, with edge set E, and we assume d>~ 2. For any finite box 
A in 77 d, the boundary OA is the set of all vertices in A which are adjacent 
to some vertex outside A. The edge set Ea is the set of all edges in E both 
of whose endpoints lie in A. 

Let t2=  {0, 1}E; the appropriate a-field ~,~ is generated by the finite- 
dimensional cylinders of O. For a finite box A, we write t2 A for the set of 
all o9 (eC2) satisfying oJ(e)= 1 if eCE A. We call an edge e open (in co) if 
og(e) = 1, and we write q(og)= {e: co(e)= 1 } as before. 

Next we introduce some probability measures on (s ~ ) .  Let A be a 
finite box, and suppose 0~<p~< 1 and q~> 1. Denote by Oa.p.q the proba- 
bility measure with support t2~ satisfying 

'{ } ~A,p,q((d)).=ZA, p, q e~A p,.(,,)(l __ p)l--o~(~) q~(,o,m, OgEQ A 

where ZA,  p, q is the normalizing factor and k(og, A) is the number of com- 
ponents of the infinite graph (Z a, q(w)) which intersect A. It is easily seen 
that ~a.p,q is essentially the random-cluster measure [given in (1.i)] on the 
graph obtained from Z a by identifying all vertices lying outside A\OA. 
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It is well known (1'15'171 that the weak limit 

exists. Let 0 be the origin of 7/a, and let {0 ~ ov } denote the event that 0 
lies in some infinite open path. It is a standard result that the critical value 

Pc(q) = sup{p: ~bp.u(0 ~-~ ~ )  = 0} (3.1) 

exists and satisfies 

0 < p c ( q )  < 1 if q>~l 

We state some properties of Pc(q) next. Part  (a) is implicit in ref. 1. 

T h e o r e m  3.1.  (a) If 1 ~<q~< ' ..~ q ,  then 

1 l_k_  q'/q q' 
P,.(q') Pc(q) Pc(q') q 

+ 1 (3.2) 

(b) Pc(q) is a Lipschitz continuous and strictly increasing function of 
q on [1, ~ ) .  

The percolation probabili O, O(p, q) is defined as the probability that the 
origin lies in an infinite open cluster, 

O(p, q) = ~bp.,,(0 ~-~ or) (3.3) 

One of the principal critical exponents of the model is the quanti ty fl = fl(q) 
satisfying 

fl(q) = lim ~log[-0(p, q)-O(pc(q), q) ]}  
p~ v,.Iq~ ~ l o g [ p -  Pc(q)] 

if this limit exists; this is the exponent  arising from the asymptotic behavior 
of O(p, q) as p J, p,(q). Another exponent  which is natural in the random- 
cluster setting is 

fl'(q) = lim ~log[O(p,.(q), q')--~-q- (P"(q)' q) ]}  (3.4) 
q" T q t ~og-~ -- q .l 

if this limit exists; this is the exponent  related to the behavior of O(pc(q), q') 
as q'T q. It is a consequence of Theorem 2.3 that 

/~'(q) =/3(q) if q > 1 (3.5) 
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The proof of this fact follows that of ref. 6, Theorem 2 [see also the discus- 
sion after Eq. (2.9) of that paper]. Similar conclusions may be obtained for 
other critical exponents, arising both from other directions of approach of 
the point (p,.(q), q) and from other order parameters. 

Proof of Theorem 3.1. (a) Suppose 1 <<,q<<,q', and let A be a finite 
box of 2U. It is fundamental 1~'~51 that 

O(p, q) = )irnz~ fb A, p.q( O ~ ~ ) (3.6) 

Now (~A,p,q may be thought of as the random-cluster measure on the finite 
graph ,,1 obtained from A by identifying all vertices lying in the boundary 
0A. By (2.3), 

O(p, q') <~ O(p, q) 

whence p,.(q')>~ p,.(q). By (2.4), 

O(p', q') >i O(p, q) if 
p' >_.__/7 

--p ')  q(l --p) q'(l 

Therefore, i f p ' <  Pc(q'), then p < Pc(q) whenever 

p' p 

q ' ( 1 -  p') >~q-~ - p )  

This implies the right-hand side of (3.2). 

(b) The Lipschitz continuity of pc(q) is an immediate consequence of 
(3.2), following easy manipulation. As for strict monotonicity, let 7 be 
given as in Theorem 2.3(b) with 6=2d, and let 1 <~q<q'. We apply 
Theorem 2.3(b) to the graph ,,~, with spanning set S=A\OA satisfying 
deg(S) = 2d. It follows from (2.6) and (3.6) that 

O(p',q')<.O(p,q) if ~,(p',q')>~(p,q) (3.7) 

This implies that 

~'(Pc(q'), q') <. ~(Pc(q), q) 

since if y(p,.(q'), q') > Y(Pc(q), q), then by continuity there exists p ' >  Pc(q') 
and p < p,.(q) such that y(p', q') > ~(p, q), in contradiction of (3.7). Now ~, 
is strictly monotone in both p and q, and therefore Pc(q) < Pc(q'). II 
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4. D I S J O I N T  O C C U R R E N C E  

In the study of percolation ~3~ the F K G  inequality is complemented  by 
the BK inequality. For  a probabil i ty  measure/~ on t'2, the latter inequality 
states that 

kt(Ao B) ~</~(A )/~(B) (4.1 ) 

for increasing events A and B, where A o B denotes the event that  A and B 
"occur disjointly." 

The formal definition of A o B is as follows. Let e~, ez ..... e,,, be the 
edges of the graph G. Any configuration o9 (~ f2) is specified uniquely by 
the set r/(o9) = {ei: og(ei) = 1 } of edges having state 1. We define the event 
A o B to be the set of all co for which there exists a subset r of q(og) such 
that w ' ~ A  and og"~B, where o9' and 09" are determined by q(og')=~O, 
q(og")= q(og)\~. We call A oB  "the event that  A and B occur disjointly," 
and note that A o B is the set of configurations for which there exist disjoint 
sets of open edges with the proper ty  that  the first set guarantees the 
occurrence of A and the second guarantees B. A typical example of this 
definition is when A and B are "connection events" of the type "vertices u 
and v are joined by an open path." 

Clearly, the BK inequality cannot  hold in complete generality for 
random-cluster  measures. For  example, let G be the graph with two vertices 
u, v and two parallel edges e, f e a c h  joining u and v. With A = {og(e)= 1 } 
and B = {og(f) = 1 }, we have that 

~bp.q(A o B) > q~p,q(A) qJp, q(B) if 0 < p < 1, q > 1 

where ~p.q is given in (1.1). One may ask about  the possible validity of 
weaker forms of the BK inequality, of which the following is an instance. 

T h e o r e m  4.1.  If A and B are increasing events and q/> 1, then 

(~p.q(A o B)  <~ (~p.q(A ) (~p., (B) (4.2) 

where ~bp.q is given by (1.1). 

Note  the presence of the product  (percolation) measure ~b,.~ in the 
right-hand side of (4.2). Theorem 4.1 reduces to the usual BK inequality 
when q = I. 13"s'13'23) This theorem may be applied in various ways, but we 
have currently no interesting application which is not already available by 
use of compar ison inequalities. Nevertheless we hope the inequality may 
have some interest in its own right. Inequalities of BK type are related 
in an intimate but mysterious way to the H a m m e r s l e y - S i m o n - L i e b  
inequalities of mathemat ical  physicsJ 18,20.22) 
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Proof. We present a sketch proof  only, since a full p roof  would be 
unduly long. Our  sketch is based on the "duplication" argument  of ref. 3, 
as reworked in ref. 13. Let G =  (V, E) be a finite graph, and let ~p.q be 
given by ( 1 . 1 ) w h e r e 0 < p < l  a n d q l > l .  

The notat ion and details of the proof  follow those presented on 
pp. 32-33 of ref. 13. We write F =  {0, 1 }E, (q for the set of subsets o f F ,  and 
consider the product  space (F1 x 1"2, ffl x if2, P I 2 )  where /" i  = [ ' ,  c~. = (__ff for 
i =  1,2, and Pl2=~p, qX~p,l. The proof  of ref. 13 may now be followed 
with only one change. In that  proof  a mapping  ~b:/"t x/-'2 ~ f ' l  x / ' 2  is 
constructed which is a measure-preserving injection on a certain union 
C~ w C; w C;' of events. In the current  setting, ~ remains an injection, but 
is no longer measure-preserving; instead, it is measure-increasing in that  

Pl2(~(x X y))  >1 PI2(x x y) (4.3) 

for all relevant x x y. Once (4.3) is established, the main inequality [(2.21) 
of ref. 13] follows as before, thereby complet ing the proof. Equat ion (4.3) 
is trivial if x x y e C1 ~ C;,  since ~b is the identity map  on this event. When 
x x y E C',', then ~b(x x y)  is obtained by interchanging the values of xk and 
Yk. If Xk = Yk, then ~b(x x y)  = x x y. Fur thermore,  xk = 1 on Cj,  and so we 
need only consider the case Xk = 1, Yk = O. For  such x, y, we have that  

P~2(q~(xxy))p~2(x • y) - (1 P - - - ~ ) (  1 - p q c c ~ ' ) - c l x ) ) p  if 0 < p < l  

where x '  is obtained from x by setting Xk = 0, and c(z) is the number  of 
components  of a configuration z (~/- 't); we have changed the notat ion here 
in order to remain as close as possible to the notat ion of ref. 13. Evidently 
c(x')>~ c(x), and (4.3) follows when 0 < p <  1. The result is trivially valid 
when p = 0 ,  1. II 
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